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Abstract— K-MEANS is one of the most popular clustering
algorithms. The CPU time required by K-MEANS is often un-
acceptable, particularly for large problems. In this article, some
new techniques are presented to reduce CPU time. Experiments
on two data sets gave 90% savings.

1 Introduction

Clustering techniques have received attention in many areas such as image
processing applications for data compression. For large clustering problems
such as Vector Quantization [2], the time required by the K-MEANS algo-
rithm [5] is unacceptable, due to the amount of time required to compute
nearest neighbours [6, 7.

Recently, Zaki et al. [9] developed a classifying method called Ensemble
Average (EA) method. Venkateswarlu et al. [8] applied the EA method to
classifying remote sensing images and reported that the method demands
less CPU time than Euclidean classifier method, although both methods
gave the same classification.

In this article, first we investigate the efficiency of the EA method
to clustering problems and propose using it with K-MEANS. Further, we
propose some variants of the EA-K-MEANS. The results are compared with
the K-MEANS algorithm using two real data sets.

2 K-MEANS Algorithm

The K-MEANS algorithm [5] is based on minimising the sum of squared
distances d;(X) from all input vectors X in the cluster domain to their
cluster centres.

Let X{, X3, ... Xy be the input vectors to be clustered; let M; be
cluster centres involved. Thus, each input vector X is assigned to cluster

(class) ¢; if dj(X) < d;(X) forall j#i,5=1, ..., K

2.1 Ensemble Average (EA) Algorithm

The EA method is a new non-parametric classification procedure in which
the ensemble average (mean) of the input vectors in each cluster is computed.
Then, an input vector X is assigned to cluster ¢; if

XT(M; - M) > Ty, Vj#i (1)
where Tj; is a threshold value defined as
T (M M) [M] (M; — 2M;)] — (M M;)[M] (M; — 2M;)]
Y 2(M/ M; + MM, — 2M] M)

(2)

Since T;; is symmetric only the upper triangle need be computed.

To assign an input vector to its nearest class, the EA method requires
(K — 1)D multiplications, D is the dimensionality, while the original K-
MEANS requires KD multiplications.



2.2 Modified Ensemble Average (MEA) Algorithm

In this algorithm we propose a new logic (termed PNND) which is based
on the Nearest Neighbouring Distance (NND) [3] and Expanded Distance
(ED) [3].

The NND of a cluster is one-half of the distance to its nearest cluster
in D-space. In the ED method, d;(X) is expressed as:

d;(X) = (XTX - WwiM; + M7 M) (3)

where W = 2X.
The PNND logic is as follows: if input vector X is assigned to cluster ¢
(in a previous iteration) and the distance between X and ¢ is less than the
NND of ¢ then X is assigned to ¢; otherwise, apply the EA algorithm.
Thus, an input vector X is assigned to cluster ¢; if

(X'X - WM, < NND(q) - MI'M,) (4)

Otherwise, apply the EA algorithm.

2.3 PCA-MEA Algorithm

In this algorithm we use Principal Component Analysis (PCA) with MEA.
Given a data set with D variables , it is possible to construct a new set of p
variables, p < D which are a linear transformation of the original dimensions
[1].

The PCA-MEA algorithm is as follows:

1. Conduct a linear transformation to reduce the original dimension to a
smaller one with 95% preserved information.

2. Run the MEA algorithm, with the reduced dimension.

3. Reconstruct the generated cluster centres by conducting an inverse
transformation.

3 Experimental Results and Discussion

To evaluate the proposed algorithms two data sets have been used. The first
set represents the widely used Baboon image, the second contains a data
extracted from one minute of speech.

All algorithms were implemented in C4+4 programming language and
executed on a Sun work station. The CPU time is measured in seconds.
The number of dimensions, D, varies between 4 and 32 and the number of
clusters, K, varies between 22 and 2'°. The approach of Katsavounidis et
al. [4] was used to initialise the clusters for all methods.

Figure 1 shows the performance of each algorithm, with varying number
of clusters (/). The MEA and PCA-MEA algorithms performed better than
K-MEANS in all cases. Also the EA algorithm performs better than the



original K-MEANS when K < 512 and D < 8, although this improvement
is marginal.

We have also tested the algorithms by varying dimensionality, while
the number of clusters and samples (input vectors) are fixed. The results
(Table 1) show that the performance of the MEA and PCA-MEA algorithms
continue to perform the best.

The clustering obtained from the PCA-MEA algorithm are very close
to those of the K-MEANS algorithm. This small difference is likely to be
acceptable as long as we are seeing 90% savings in CPU time. It is expected
that one or two further iterations may be needed to achieve the same results
as those of the K-MEANS. This process will be cheap if the MEA algorithm
is used.

4 Conclusion

In this article, new strategies have been incorporated into the K-MEANS
clustering algorithm. These strategies were tested on two data sets. The
results show that the percentage of CPU time savings varies between 60 to
90%. The new strategies represent efficient tools to clustering problems.
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Figure 1: (a) Image: D = 8, N = 8192, No. of PCs=2. (b) Speech,
D =38, N =29000, No. of PCs=6, first 20 iterations.

IMAGE SPEECH
D 481163248 ][16] 32
K-MEANS [ 45 [ 98 | 183 | 343 | 163 | 348 | 650 | 1214
EA 45 | 98 [ 186 | 357 | 153 | 345 | 643 | 1225
MEA [ 33[76| 125242 | 48 | 114 | 276 | 448
PCA-MEA | 5 [ 15| 33 | 55 | 42 | 91 | 220 | 358

Table 1: CPU time for both data sets (N=2048,K=256) with different di-
mensions, first 20 iterations.



