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Abstract

In this papera vehicle tracking algorithm is presentedbasedon the combi-
nation of a per pixel background model (an extensionof work by Stauffer and
Grimson[12]) anda setof singlehypothesisforegroundmodels basedon a gen-
eralmodelof objectsize,position,velocity, andcolourdistribution. Eachpixel in
the sceneis thus‘explained’ aseitherbackground,belongingto oneof the fore-
ground objectsor asnoise. Calibratedground-plane information is usedwithin
the foregroundmodel to strengthenthe object sizeand velocity consistency as-
sumptions. A learneda priori model of typical road travel direction andspeed
is usedto provide a prior estimateof objectvelocity which usedto initialise the
velocity modelof eachof the foreground objectmodels.This model is typically
anExtendedKalmanfilter but othermodelsarepossiblewithin thealgorithm.The
systemrunsat nearvideo framerate(

�
20fps)on modesthardwareandis robust

assumingsufficient imageresolutionis availableandvehiclesizesdo not greatly
exceedthepriorson objectsizeusedin objectinitialisation.

1 Introduction

In recentyearstherehasbeenmuchwork on the tracking of moving objectswithin a
scene.Systemsdevelopedfor suchtasksaspeople tracking [16, 1, 8, 6], facetracking
[4, 9] andvehicle tracking [3, 13, 5] have comein many shapesor sizes,but maybe
broadly divided into explicit modelbasedmethods (wherea fixed,detailedmodelof
objectcharacteristicsis built e.g. [4]) or implicit modelbasedmethods (where more
general object, or scene,characteristicsare modelled, often dynamically e.g. [9]).
There is nosuchthingasa ‘model free’ objecttrackerasall systemsmakeassumptions
about theobjector scenewhich form thebasisof a trackingmodel.

Our particular interestis in theanalysisof traffic sceneswith multiple (oftenlarge
numbers)of vehicles interacting.A framefrom a typical sequenceis shown in figure
1.
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Figure1.1: Imageof a TypicalTraffic Scene

Figure1 illustratesthat thevehiclesof interestvary widely in appearanceandan
explicit, detailedmodelis notnecessarilysuitable.Beymeret al. [3] cameto asimilar
conclusionin asimilarscenario.Ferrymanet al. [5] (basedonearlierwork by Sullivan
[13]) demonstratethat explicit modelsmay be madeto work in a vehiclemounted
camerascenario, howeverresultsareonlypresentedfor 12secondsof video,containing
a limited number of vehicles.Theformermethodhasbeendemonstratedto work (to a
degreeof accuracy2) on44hours of video.

In this papera moregeneralmodelling strategy is taken (a la Beymer et al. [3]
ratherthanFerryman/Sullivan et al. [5, 13]), including both a background andfore-
groundmodel in our system.Our schemeusesa modifiedversionof theStauffer and
Grimson[12] backgroundmodel combined with a novel foreground model that bor-
rows conceptuallyfrom this background model. Our foreground model is basedon
modelling vehicle invariantssize,colourdistribution andvelocity (which is assumed
to be locally invariantin time) for a particularvehicle. Foregroundpixels (identified
by the background model) ratherthanblobs (asusedby Wren et al. [16]) or corner
features/ regions(asusedby Beymeret al. [3]) arecomparedwith various instances
of our foregroundmodel to determine to whichmodelthey belong(if any). A velocity
model (oneexampleof whichis aKalmanfilter) is usedto propagatethesemodelsover
time(predictive tracking).

A prior model of roadvelocity over the sceneof interestis built from an initial
(prior free)versionof thetracker andusedto initialise velocity anddirectionof travel
estimatesin the final implementation. This leadsto ‘lock’ beingachieved fasterand
fewer lost vehicles.

2TheBaymersystemachieves74-94%accuracy dependingon theroadscenario
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2 Modelling the Background Using a Multi-modal Sta-
tistical Model

There havebeenmany methods proposedfor themodelling of backgrounds. Thesim-
plest perhaps is to take a single frame of a scenecontaining no objectsof interest
andsubtractthegreylevel or colour valuesof this imagefrom a frame containingob-
jectsof interest.Any nonzeropixel valuesarethusclassifiedaspartof a foreground
object. This method doesnot work in mostpracticalsituationsdueto noisein thein-
tensity, causedby imaging andlighting effects,andspatialnoise,causedby camera
jitter. Practicalmethodsattemptto model thedistributionof this noiseusingstatistical
techniques.

Baumberg andHogg[2] useamedianfilter ateachpixel to construct abackground
model. A thresholdedabsoluteimagedifferenceis usedto identify foreground pixels.
Haritaoglu et al. [6] modelbackground pixel intensitiesusingminimum andmaximum
values in additionto a maximum differencebetweenframes. If a pixel intensityfalls
outsidethis modelit is classifiedasforeground. Ridderet al. [10] usea Kalmanfilter
at eachpixel to model pixel intensitiesandpredicta singlevaluebackgroundmodel,
howevertheforeground detectionis performedusingathresholdedabsoluteimagedif-
ference.Wrenet al. [16] model pixel colour asa full covarianceGaussiandistribution
in YUV colour-space.Similarly McKennaet al. [8] usea diagonal covarianceGaus-
sianin RGBcolour-space.Ourwork however is basedonthatof StaufferandGrimson
[12] in which pixel colourvalue historiesin RGB 3 spacearemodelledasmixturesof
Gaussians.

Mixtures of Gaussiansallow the colour distribution of a given pixel to be multi-
modal, which is essentialif thereis significantcamerajitter asin ourapplication. Fig-
ure1 shows thedistribution of pixel colour over time at anedgepixel in thepresence
of camera jitter.
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Figure2.1: ColourValuesof anEdgePixel OverTime

In StaufferandGrimson’smethod [12] afixednumberof Gaussians(typically 3-5),
with diagonal covariances,areused.Thevarianceof thered,green andbluetermsis
constrainedto beequal. Theparametersof themixture (weights,Gaussianmeansand
covariances)areupdateddynamically over time usingequations 1, 2 and3.

3It is claimedthis choice of colour-spaceis arbitrary andthemethodworksaswell in any colourspace
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Where� is thelearningrateand � ��� � is 1 if thecurrentRGB input matchesGaus-
sian � (i.e. � is theclosestGaussianandwithin n standarddeviations of themean)and
0 otherwise.Theweightsarere-normalisedafterthis update. If a Gaussianis matched
its mean( � ) andvariance (  ) termsareupdatedwith referenceto the current RGB
input ( ! ). � ���"	#���$%� � ��������$ ! � (2)

 �&� �"	#���$%�  �&���'� �($)	 ! �* � �#��+�	 ! �* � �#� (3)

where: $,�-�/.�	 ! �10 � �%2  �3� (4).)	 ! 0 � 2  ���-4 �65798;: �)<>=@?BADC 5 8E: �F<>= (5)

If thecurrentRGBinputmatchesnoGaussiantheGaussianwith thelowestweight
is replacedby onewith its meanat the current input valueanda large variance. To
remove transients(i.e. foreground pixels) from the distribution only a subsetof the
mixtures are usedas the background model. The subsetis chosenby ordering the
Gaussiansin descending weightorderandselectingthefirst B distributions where:G �IH>J�K9L,MON�PQ	 PR�TSU� � �WVYX � (6)

WhereT is “a measureof theminimumportion of thedatathatshouldbeaccounted
for by background”.

2.1 Improvements to the Stauffer-Grimson Background Model

The systemwe are developing is to be usedin the UK wherethe weatheris vari-
able. In particularthe sunoften disappearsbehindclouds for lengths of time before
re-appearingrapidly. This canleadto fairly large intensitychangesover shortperi-
odsof time. Uni-modal background modelling schemesmustmodelthis asassingle
elongateddistribution in colourspace(reducing thespecicifityof themodel) or usean
intensitynormalisedcolourspace. Our experimentssuggest that the latter approach
decreasesthe signalto noiseratio in an imagestreamascompressionmethods com-
presscolour informationrathermorethanintensityinformationin keepingwith human
perception. The alternative approachis to usea multi-modal representationsuchas
Stauffer andGrimsons Gaussianmixture models[12]. We take this latterapproachas
ourbasis,howevereventhis hasits limitations.

TheStauffer/Grimsonmethod adaptsover time and,assuch,encodesa finite time
historyof events. Thelearningratecontrols thescaleof this history(a fasterrateen-
codesashorterhistory) with atradeoff necessarybetweenbeingfastenoughtoadaptto
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novel changesandbeingslow enough to storea usefultemporal history. At fastadap-
tationratesthedistributionquickly becomesdominatedby asingleGaussian(andthus
uni-modal). We have modified theStauffer/Grimsonmethodto improve the temporal
historystoragewhile running at reasonably high adaptation rates(adapting in a novel
background within asecondsor two ratherthan20+secondsasin theStauffer/Grimson
setup).Thesemodificationsare:

2.1.1 Variable Adaptation Framerate

Model distributions areupdatedwith a variable framerateperpixel (a integer division
of the incoming imagestreamframerate). Stablepixels (i.e. pixels that fit the back-
grounddistribution over a number of frames)areupdatedwith a lower frameratethan
pixels thathavebeenrecentlyclassifiedasforeground. Theframerateis given by:Z\[1]Q^`_ �@a6�cb ZedEf�]1[ �hg`i P�j ^ 2 wherei P@j ^lk iWm _TnZedEf�]1[ �hg`iWm _`n 2 otherwise

(7)

Where:Ze[T]Q^`_ �@a = UpdaterateZedEf�]1[ � = InputFrameratei P�j ^ = No. of consecutivebackgroundframesi P�j ^ = Threshold onframeratedivision(typically 25 frames/ 1 sec)

This addition alsoservesto reduce thecomputationalexpenseof themethod con-
siderably. The reader may notethat the schemedescribeddoesnot differentiatebe-
tweenchangesin thebackgroundandforeground models entering thescene.There-
sult is thata high adaptation rateis usedat pixelscontaining a foreground object. As
a resultof this slow moving vehicles maybecomeincludedin thebackgroundmodel.
If a method is available to differentiatebetweenforeground objectpixels andpixels
wherecolourchange is simplya resultof anenvironmentalchangetheadaptation rate
of thepixelsrelatingto foregroundobjectsmaybereduced.Fortunatelytheforeground
modelling method (describedlater)providesuswith exactly this information.It is im-
portant to notethat theadaptationrateshould never be reducedto zeroas,if an area
of pixelsarefalselyclassifiedasresultingfrom aforegroundobject,theenvironmental
changethatcausedthis would never beincorporatedin thebackgroundmodelandthe
falsehypotheseswould bepropagatedthrough time. Fortunately in our casethereare
constraints on what is classifiedaspartof a foreground model(seelater) including a
nonzerospeedrequirementin theinitialisationphaseandthis is not reallyaproblem.

2.1.2 Maximum Weight Limit for Update

To furtherpreventthedistribution becoming effectively uni-modalanupper limit is put
on theweightof any oneGaussiancomponent(typically 0.5). On updateif a sample
matchesa Gaussianwith a weight above this threshold the mixture componentsare
left unchanged. If the distribution of a pixel haslow modality (i.e is fairly stable)
this can lead to unmodified Gaussiansor Gaussiansrelatingto temporary transients
beingselectedasbackground. To counter this Gaussiansarelabeledon initialisation
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as‘unmodified’ andonly Gaussianssubsequently labeledas‘modified’ areusedin the
background model. In additiona lower limit is put on theweightof any Gaussianto
excludetransients.

2.1.3 Modelling in RGB space as an ‘Intensity Cylinder’

TheStauffer/Grimsonmethodeffectively definesa background colourdistribution as
lying within a setof spheresin colourspace.Figure2 illustratesthat (for a non-edge,
theoretically uni-modal)pixel thedistribution is notmodelled well by a sphere.
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Figure2.2: ColourValuesof aNon-EdgePixel OverTime

It canbe seenfrom figure 2 that (for a non edgepixel) intensityvaluesapproxi-
matelylie alonga sectionof a straightline in RGB colourspacethat, if extended,ap-
proximatelyintersectstheorigin. TheStauffer/Grimsonmethodmodelsthisuni-modal
distribution asa multi-modalsetof spheresin RGB space.If an intensitynormalised
colourspacewasusedany point alongthecomplete line wouldbeequivalent, allowing
a a singlesphereto beused,however thediscrimination power of thespacewould be
reduced(especiallyat low intensities).Our approachis to model the variationalong
(andperpendicularto)anapproximationto thisline. Theapproximationusedis theline
betweentheorigin andthecurrentmeanof thedata(or uni-modal subsetof thedata).
Wemodel thevariation along this line asasingle(1D) Gaussiancenteredonthemean,
andthevariationperpendicularto theline with afixednoisethreshold. Mixturesof this
‘cylindrical’ representationareusedin exactlythesamewayasin theStauffer/Grimson
method to definea per-pixel observation history. Thismaybethought of asequivalent
to usinga mixtureof Eigenspaces[15], however without thecomputationaloverhead
of actuallyperformingPrincipal ComponentsAnalysis.

2.2 Modelling Very Low and Very High Intensities

At low andhighintensitiestheassumption thatuni-modaldataliesalongastraightline
breaks down dueto reduction in signal to noiseratio (at low intensities)andcolour
saturation(at high intensities). In suchcircumstances the 3D colour mixture is sim-
ply convertedinto a 1D intensitymixture and this usedas the basisof background
determination.
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3 Modelling Foreground Objects

Stauffer andGrimson[12] statethey do not usea foreground model; their approachis
to associate‘blobs’ extractedusingconnectedcomponentsanalysisusingaKalmanfil-
ter. A similarapproach is takenby Beymeret al. [3] whoassociateregionscontaining
corner featuresover time usinga Kalmanfilter. We conjecture thatsuchmethods do
containaforegroundmodelwhichis basedontheKalmanfilter assumptions(e.g.con-
stantvelocity). Suchmethodsareessentiallya simplificationof thestrategy employed
by Wren et al. [16] in which prior spatialand temporal information is included in
addition to motionassumptions. All thesemethodswork by classifyingextractedfea-
tures(corners,blobs/ connectedregions)ascomingfrom oneof anumberof processes
(vehicles,body parts).

In our scenario(seefigure 1) featuressuchascornersareun-reliable due to the
relative sizeof the objectsof interest. Connectedcomponentsanalysis(basedon a
foreground extractedusinga per-pixel backgroundmodel) is alsoa poor tool as the
similarity of objectsto backgroundin somecasescanresult in a highly fragmented
foregroundwith many lonepixels.This is illustratedin figure1.

a)

b)

Figure 3.1: Fragmented Foreground Object Produced Using the (original) Stauf-
fer/GrimsonBackgroundMethod

It is clearfrom figure1 thatperforming connectedcomponentsanalysisaddslittle
informationand,if small regions arediscarded, maysignificantlyreducetheinforma-
tion present.For this reasonwechooseto associatepixels,ratherthanblobsor regions,
with objectmodels. This hasthe addedadvantageof a computationalsaving. Our
foreground model is inspiredby theStauffer/Grimsonbackground modelandalso(in
termsof theuseof colour)by thework of McKennaet al. [8]. Themodelconsistsof
representationsfor:

1. Position: A single2D point is usedto representthecentroidof a givenobject
on thegroundplane.

2. Size: 1D Gaussiansareusedto representtheobjectsizeasavariation (in ground
planeco-ordinates)in the direction of travel andperpendicular to thedirection
of travel (relative to theposition).

3. Velocity: Singlevaluesareusedto represent a rolling averageof thevelocity
vector (in ground planeco-ordinates). An alternative implementation usesan
ExtendedKalmanfilter to estimatethesevalues.

7



4. Colour Distribution: A Gaussianmixture is usedto represent colourover the
entireobjectin exactly thesamewayasthebackgroundmodel.

4 Tracking Using Prediction

Tracking is performed by predicting forward position from the previous frame into
thecurrent frame(usingthevelocity estimateobtainedby takinga rolling average of
the positiondifferential or from a Kalmanfilter4) andassociatingeachpixel with a
foreground model. This is performedby defininga distancemeasure basedprimarily
onthePosition/Sizeof objectsfor eachmeasure.This is given asthemagnitudeof the
manhalnobisdistancesof the datafrom the model in the two sizedistributions as in
equation 8. o

& �qp &d;frsdEf � p &] autrB] aut (8)

Where:p dEf = Distanceof datafrom modelmeanin dir. of travelp ] aut = Distanceof datafrom modelperpendicularto dir. of travelrsdEf
= Modelvariancein dir. of travelrB] a#t = Modelvarianceperpendicularto dir. of travel

A pixel is associatedwith themodelwith thelowestdistance(

o
) if thisdistanceis

below a specifiedthreshold (typically 2.5). If this distanceis above the threshold but
below a secondthreshold (typically 4 or 5) thecolourvalue of thepixel is compared
with the colour Gaussianmixture in the modelby taking the minimum mahalanobis
distanceof thecolour valuefrom any Gaussianmixture mean.If this distanceis less
thana specifiedthreshold (typically 2.5) the pixel is acceptedasresultingfrom this
model, otherwise it is rejected.This schemeallows the objectsizehypothesesto be
enlargedover time from theinitial hypothesesif (andonly if) the imagecolour infor-
mationsupports this. Figure1 illustrateshow pixel/modelgrouping is performed.

If a pixel is not classifiedasresultingfrom oneof thecurrent foreground objectsa
new model is initialisedcentredat this pixel with pre-specifiedsizeparameters (based
onthetypicalsizeof acar).Thecolour distributionis initially uninitialisedasit is built
upover thefirst few frames.

Model parametersareupdatedat eachframefrom associatedpixels in a similar
manner to the background model parameters. Position is calculatedas a weighted
centroid of associatedpixels, with the predictedposition ( � ] tva ^ ), andsize variance
(  d;f 2  ] a#t ) providing theweightsasin equation9.� f auw��yx ! f .�	 ! f 0 � ] tva ^ 2  d;f �u.�	 ! f 0 � ] tva ^ 2  ] aut��x .)	 ! f 0 � ] tza ^ 2  dEf �#.�	 ! f 0 � ] tza ^ 2  ] aut � (9)

Sizevariancesarecalculatedby takingan unweightedmeanof the squareof the
distancesfrom associatedpixel locations to thepredictedcentroidin thedirectionof

4TheKalmanfilter is observed to give a better estimate of velocity
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(if colour matches model)
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(if colour matches model)
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(if colour matches model)

Pixel associated with 
no model

Figure4.1: Associationof Foreground Pixelswith ForegroundModels

travel andperpendicularto thedirectionof travel asgiven in equations10and11. dEf9{Q|�} � x 	 ! f  � ��~��i (10)

 ] aut {�|@} � x 	 ! f  � �*~����\�i (11)

Where � and ���\� areunit vectors in thedirectionof travel andperpendicularto
thedirectionof travel respectively. Colourdistributions areupdated in thesameway
asfor thebackgroundmodel(seesection2), with pixelsfrom different spatial,aswell
astemporal, locationsupdatingthemodel.

As with thebackground model anupdate factor( � ) is usedto control theupdate.
Thecolour modelis updatedasdescribedpreviously (section2) andthepositionand
sizevariancemodelsupdatedusinga weightedsumasgivenin equations 12 to 14.� f3� � ��� � f a#w �-	#������ � f (12)

 dEf9{Q� 5 ���  d;f3{Q|�} �-	#�6��*�  d;f3{ (13)

 ] aut {�� 5 �-�  ] aut {�|@} �-	#�6����  ] aut { (14)

Theupdatefactor( � ) in initially sethightoallow rapidadaptationto anovel object.
After a number of frames(typically 5-10) � is reducedto stabilisethemodel,locking
it on to its target.

9



5 Incorporating A-priori Road Information

In the initial implementation no knowledge of roaddirectionor typical speedswas
included. This forcedinitial velocity anddirection of travel estimatesto zero.Section
4 describeshow velocityanddirectionof travel informationareintegral in thetracking
process. Poor initial values for thesecanleadto failure of a model to ‘lock onto’ a
vehicle (especiallyin the far-ground). If an initial zerovelocity hypothesisis used
a modelmeancan lag behind the centroidof the moving vehicle until the velocity
estimatebecomesmorerealistic. If imagesupport is poor the lag canbecome great
enoughthatthevehicle is lost. Thedirection of travel effectstheperceivedaspectratio
of thevehicle, this canalsoleadto poor tracking.

Thesolutionto thisproblemis to build apriormodel of typicalroadtravel direction
andspeed.As carstypically travel in thesamedirection, within a limited speedrange,
onthesamestretchof road(dueto roadtraffic regulations)any prior basedonprevious
observationshould beareasonableestimateof theactualdirectionandspeedof anewly
observedvehicle.Ourprior model is trainedontheoutputof theinitial implementation
of thetracker, onthebasisthat,in general,thisgivesaccuratetrackingresultsandfalse
andmissingtracksarerareenough to betreatedasoutliers in any statisticalmodel.

Thepositionoutputof thetracker is quantisedusingthevector quantiserproposed
by JohnsonandHogg[7]. Positional(ground plane)spaceis thenrepresentedasa set
of 2D Gaussianmixturescentredon theseVQ prototypesusingthe adaptive Kernel
method [11] 5. This method placesGaussianKernelswith higher variancein areasof
lower prototypedensity. In this way the‘contribution’ of thei’ th point in spaceto the
j’ th prototypemaybecalculatedasin equation 15.� d�� � � ��� 	@� d 0 � � 2  � �x m� S*� � 	�� d 0 � � 2  � � (15)

Given the velocity output of the tracker, a directionvector ( � ) andspeedcanbe
calculatedfor eachvehicle at eachtimestep.We usethecontribution of eachof these
to eachprototypeto calculatea weightedmeandirectionandspeedasin equations16
and17. �� � � x��d SU� � d�� � dx-�d SU� � d�� (16)�� � � x��d SU� � d�� � dx�� �
� � � d�� (17)

Figure1 showsa typicalgroundplanevelocitymaplearned.
Thevelocity mapis usedto calculatean initial estimateof velocity anddirection

(unit normalisedvelocity) whennew objectinstancesareinitialisedusingequation 18.r n�� � x � SU� � �� � �� � � 	��U2��'0 � � 2  � �x � SU� � � 	��/2h�'0 � � 2  � � (18)

5Optimal performancewasachieved usinga window width around10 times smallerthanthevaluesug-
gestedby Silverman[11]
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Figure5.1: Ground PlaneVelocityMapLearnedFromTrackedData

6 System Evaluation

Thevehicletrackerwasevaluatedbydrawing aboxaround all vehiclesin asceneusing
aninteractive tool. Theresultsof this for a singleframe is shown in figure1.

Figure6.1: HandFittedBoxesUsedas‘Ground truth’ for Evaluation

This interactive fit was performed at ten frame intervals on a 1 minute / 25fps
sequence (i.e. 150 frames were labeledup). The sequencescontains102 separate
objectswith 12-28beingpresentin any oneframe. This givesa total of 2563object
instancesto evaluate. Thesequencewascarefullychosento containseveral typesof
vehicles (cars,vans, lorries)anddifferent sortsof flow (congestedandrelatively free
flow). Statisticsfor how well the tracker matchesthis artificial ‘groundtruth’ were
then gathered. Figure 2 shows resultsfor the complete tracker, in addition to two
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incompletetrackerswhichdonotuseroaddirection informationor colour information
in modelling theforegroundobjectsrespectively.

Tracker ObjectsTracked Prop.FramesTracked�
Full Tracker 100% 80.7% [20.2%]
No Road 100% 78.6% [20.7%]
No Colour 100% 79.3% [21.9%]� Valuesgiven aremeanandstd.dev. overall objects

Figure6.2: Evaluationof Tracking Results

Theresultspresentedin figure2 arecomparablewith thosepresentedby Baymer
et al. [3] (although evaluated on a completely different sequence). Presentingthe
resultsaswe have done however doesnot tell theentirestoryasthetracker performs
muchbetterin heforegroundthanit doesin thebackground,asobjectsaresignificantly
smallerin thebackground thantheforeground dueto foreshortening. To demonstrate
this theinput imageis divided evenly into threeregionsasillustratedin figure3.

Background

Midground

Foreground

Figure6.3: Definitionof thethreeevaluationareas

Typical sizesof objectsin theseregions are4x3, 8x7 and16x11 pixels at a res-
olution of 180x144. This resolutionwas chosenas it is possibleto run the tracker
at nearframe rate(20-23Hz depending on number of objects)on a conventional PC
(PIII 1GHz)at this resolution. Figure4 shows theresultsfor thefull trackerpresented
dividedinto thesethreeregions.

Section ObjectsTracked Prop.FramesTracked
Foreground 100% 95.9% [12.0 %]
Midground 99% 95.7% [15.9 %]
Background 99% 71.4% [27.5 %]

Figure6.4: Evaluationof Tracking Resultsfor differentRegions

It canbe seenthat the tracker performs well in the foreground and midground,
however performanceis poorer in thebackground. An additional considerationwhen
evaluatinganobjecttracker is multipleobjecthypothesesbeingassociatedwith differ-
entmodels.This is very rarelya problem whentracking cars(typically lessthan1%
of carsareassociatedwith multiple hypothesis),however for larger vehiclessuchas
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lorriesthis is a frequentproblem.Theselargevehiclesrepresent 5-10% of thevehicles
observed.

7 Discussion, Conclusions and Future Work

We have presenteda vehicle trackingsystemthat haspotential for usein an online
roadmonitoring scenario.The systemis basedon the combination of a mixturesof
Gaussianscolour background model anda set of foreground modelseachof which
propagatesasingleestimateof anobject position, velocity, sizeandcolour distribution.
An a priori modelof typical roadtravel directionandspeedandpriors on objectsize
areusedin the initialisation phase.This systemhasbeenevaluatedoffline against a
handlabeledsequenceandfound to berobustif a) Thereis sufficient resolutionin the
imagefor thebackgroundmodelto distinguishanobject from sensornoise(typically
theobjectmustbeat least6x6pixelsin theimageplane)andb) theprior onthesizeof
thevehicleis accurate.

Issuea) is easilyaddressedby zooming thecamerain further(andusingmultiple
cameras if necessary), however issueb) is not so straightforward. The initialisation
schemedescribedin thispaperis ratherbasicandnotidealin termsof its initial position
andsizeestimates(howeverit is extremely computationallyefficient).Pixelsthatdon’t
matcha current objecthypothesisareusedto initialise new objectinstancesin raster
scanorder. This leadsto new hypothesesbeinglocatedat the top left of a new object
(rather than at the centroid. Figure 1 illustratesthis works adequately for vehicles
of similar (or smaller)sizeto the initial sizehypothesis,however for larger vehicles
multiplehypothesismaybeinitialised.

Object

Initial Hypothesis

Figure7.1: Multiple InitialisationProblem for LargeVehicles

Increasingtheinitial sizehypothesesis notasolutionto thisproblemasthiswould
tendto associatea hypotheseswith multiple vehicleswhenthesevehiclesarein close
proximity. This is currently not a greatproblemasthe initial sizehypothesisvalues
arechosento relateto thesmallestobservablevehicles(cars)and,evenwhenin close
proximity, the colourmodelof onegenerally dominatesandexcludespixels relating
to the otherfrom the updatestage. It canbe seenfrom figure 1 that the locationof
thehypothesisaremore of a problemthanthe (initially) fixedsize. Futurework will
investigateinitialisationschemesthatclusterpixelsun-associatedwith currentvehicle
hypothesisto allow initial hypothesesto bebetterlocatednearthecentroid of vehicles.
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Developing methods that perform this taskrobustly at framerateis a far from trivial
task.

Ferrymanet al. [5] presenta method (basedon an earlier algorithm by Tan et
al. [14]) for identifying vehicletype(car, vanor lorry) by examining imagegradient
profilesandcomparing themtohistogramscalculatedoffline for thethreevehicletypes.
A similar methodcould beusedwithin thecontext of our tracker to selectbetweena
setof sizepriors.

In conclusionwe have presented anvehicle/object trackingschemebasedon gen-
eral assumptions about sceneandobjectcharacteristics.Theseassumptions (colour
consistency for the backgroundand local position, size, colour andvelocity consis-
tency for moving objects)generally hold trueandwe have identifiedpreviouslywhere
theseassumptionsbreakdown. This is in contrast to moredetailedmodels whereas-
sumptions (suchasshapeconsistency over objects)areat bestapproximations to the
truth. Priorsonobjectcharacteristics(suchasinformationonexpectedsizeandveloc-
ity) areeasilyincorporatedinto this scheme.Thetracker could beextended to include
shapepriors (if appropriate)which may modelobjectsbetterthanthe current Gaus-
sianassumption. It is howevernotclearthatany singleshapeprior wouldbegenerally
applicable dueto thewiderangeof observedobjectshapes..

Thecombinationof backgroundandforeground models servesto completely ‘ex-
plain’ theobservedsceneandis anapproachthatis now feasiblefor online(‘real time’)
systemsdueto theincreasedcomputationalpower available. There is muchscopefor
future researchinto methods thatfully model(explain) anobserved sceneastheresult
of asetof underlying processes.
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