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Abstract

Thisreport discusses methods behind tracker evaluation, the aim being to eval-
uate how well a tracker is able to determine the position of a target object. Few
metrics exist for positional tracker evaluation; here the fundamental issues of tra-
jectory comparison are addressed, and metrics are presented which allow the key
features to be described. Often little evaluation on how precisely atarget istracked
is presented in the literature, with results detailing for what percentage of the time
the target was tracked. Thisissueis now emerging as a key aspect of tracker per-
formance evaluation.

The metrics developed are applied to real trajectories for positional tracker
evaluation. Dataobtained from asports player tracker on video of a5-a-side soccer
game, and from a vehicle tracker, is analysed. These give quantitative positional
evaluation of the performance of computer vision tracking systems, and provides
aframework for comparison of different methods and systems on benchmark data
sets.

1 Introduction

There are many ways in which the performance of a computer vision system can be
evaluated. Often little evaluation on how precisely a target is tracked is presented in the
literature, with the authors tending to say for what percentage of the time the target was
tracked. This problem is beginning to be taken more seriously, and an annual workshop
on performance evaluation of tracking and surveillance [5] has begun recently (2000).

Performance evaluation is a wide topic, and covers many aspects of computer vi-
sion. Ellis [1] discusses approaches to performance evaluation, and covers the different
areas, which include how algorithms cope in different physical conditions in the scene,
i.e. weather, illumination and irrelevant motion, to assessing performance through
ground truthing and the need to compare tracked data to marked up data, whether this
be targets’ positions, 2D shape models, or classification of some description.

In previous work [4] , mean and standard deviations of errors in tracked data from
manually marked up data has been presented, with simple plots. Harville [2] presents
similar positional analysis when evaluating the results of person tracking using plan-
view algorithms on footage from stereo cameras. In certain situations Dynamic Pro-
gramming can be applied to align patterns in feature vectors, for example in the speech
recognition domain as Dynamic Time Warping (DTW) [6]. In this work trajectory
evaluation builds upon comparing equal length trajectories having frame by frame time
steps with direct correspondences.

When undertaking performance evaluation of a computer vision system, it is impor-
tant to consider the requirements of the system. Common applications include detec-
tion (simply identifying if the target object is present), coarse tracking (for surveillance
applications), tracking (where reasonably accurate locations of target objects are iden-
tified), and high-precision tracking (for medical applications, reconstructing 3D body
movements). This report focuses on methods behind positional tracker evaluation, the
aim being to evaluate how well a tracker is able to determine the position of a target
object, for use in tracking and high-precision tracking as described above.



2 Maetricsand statisticsfor trajectory comparison

Few metrics exist for positional tracker evaluation. In this section the fundamental
issues of trajectory comparison are addressed, and metrics are presented which allow
the key features to be described. In the following section, these metrics are applied to
real trajectories for positional tracker evaluation.

2.1 Trajectory definition

Atrajectory is a sequence of positions over time. The general definition of a trajectory
T is a sequence of positions (z;,y;) and corresponding times, ¢;:

T = {(xluylatl)a ($2;x27t2)7 RS (xn;yn;tn)} (1)

Figure 1: Example of a pair of trajectories.

In the computer vision domain, when using video footage, time steps are usually
equal, and measured in frames. Thus, ¢,, may be dropped, as the subscript on the
positions can be taken as time, and Equation 1 becomes:

T= {(1'1;?/1)7(1'2;1'2);-":(xmyn)} (2

i.e. trajectory T is a sequence of (x;,y;) positions at time step 4, as illustrated in
Figure 1. Paths are distinguished from trajectories by defining a path as a trajectory
not parameterised by time.

To evaluate the performance of the tracker, metrics comparing two trajectories need
to be devised. We have two trajectories T4 and T which represent the trajectory of
a target from the tracker, and the ground truth trajectory - which is usually marked up
manually from the footage. Metrics comparing the trajectories allow us to identify how
similar, or how different they are.

2.2 Comparison of trajectories

Consider two trajectories composed of 2D positions at a sequence of time steps. Let
positions on trajectory T'4 be (x;,y;), and on trajectory T's be (p;, g;), for each time
step 4. The displacement between positions at time step ¢ is given by d;:

d; = (pi, @) — (®i,9:) = (Pi — T4, G — Ys) 3)



Figure 2: Comparison of displacement between two trajectories.

And the distances between the positions at time step ¢ are given by d;:

d; = |di| = /(pi — )2 + (@ — v:)? 4)

A metric commonly used for tracker evaluation is the mean of these distances [4, 2].
We shall call this metric m.

my = p(di) = % > di (5)
i=1

my gives the average distance between positions at each time step. Figure 2 shows two
trajectories and identifies the distance between corresponding positions. The distribu-
tion of these distances is also of significance, as it shows how the distances between
trajectories (tracker error) are spread, as illustrated in Figure 3, where a skewed distri-
bution can be seen.
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Figure 3: Distribution of distances between positions.

Other statistics provide quantitative information about the distribution. Here we
identify the mean, median (expected to be lower than the mean, due to the contribution
to the mean of the furthest outliers), standard deviation, minimum and maximum values
as useful statistics for describing the data. Let us define D(T4,Tg) to be the set of
distances d; between trajectory A and B. The above statistics can be applied to this set:



Mean wW(D(Ta,Te)) = 30 .d;
Median median( D(Ta,T)) = dan if n odd,
= %(é% +day) if n even
Standard deviation o(D(Ta,Tg)) = \/% Yo (di — p(di))?
Minimum min( D(T4,Tg)) = thesmallest d;
Maximum max( D(Ta,Tg)) = thelargestd;
(6)

2.3 Spatially separated trajectories

Some pairs of trajectories may be very similar, except for a constant difference in some
spatial direction (Figure 4). Defining a metric which takes this into account may reveal
a closer relationship between two trajectories.

Figure 4: Two spatially separated trajectories.

Given the two trajectories T'4 and T’g, it is possible to calculate the optimal spatial
translation d (shift) of T4 towards T'g, for which m4 is minimised. d is the average
displacement between the trajectories, and is calculated as:

d=p(d;) = % > di (7)

Now we can define D(T4 + &, Tg) to be the set of distances between a translated
trajectory T4 (by d) and T'5. The same statistics can be applied to this set, D(Ta +
d, Tg), to describe the distances. u( D(T4 + d,T5) ) < u( D(Ta,Ts) ) inall cases,
except when the trajectories are already optimally spatially aligned.

When pu( D(Ta + d,Tg) ) is significantly lower than p( D(Ta,Ts) ), it may
highlight a tracking error of a consistent spatial difference between the true position of
the target, and the tracked position.

2.4 Temporally separated trajectories

Some pairs of trajectories may be very similar, except for a constant time difference
(Figure 5). Defining a metric which takes this into account may reveal a closer rela-
tionship between two trajectories.



Figure 5: Two temporally separated trajectories.

Given the two trajectories T'y and T'g, it is possible to calculate the optimal tem-
poral translation j (shift) of T4 towards T's, for which m is minimised. When the
time-shift j is positive T4 ; is best paired with T'g ;4 ;, and when j is positive T'4 ;5 is
best paired with T'g ;. Time-shift j is calculated as:

R

. : 1

] = arg mlnk( n——|k| Z|(pi+k;(h+k) - (ﬂfi;yi)|) ®)
i=Q

ifk>0then@ =0else@Q =—k. R=Q +n — |k|.

Now we can define D(T'a, T, j) to be the set of distances between a temporally trans-
lated trajectory T4 or T'’s, depending on j’s sign. The same statistics as before can
be applied to this set, D(T'a,Ts, j), to describe the distances. u( D(Ta,Tr,j) ) <
uw( D(T4,Tg) ) inall cases, except when the trajectories are already optimally tempo-
rally aligned.

When u( D(T4,Tg,j) ) is significantly lower than u( D(T'4,TB) ), it may high-
light a tracking error of a consistent temporal difference between the true position of
the target, and the tracked position. In practice j should be small; it may highlight a
lag in the tracked position (Figure 5).

2.5 Spatio-Temporally separated trajectories

Combining the spatial and temporal alignment process identifies a fourth distance
statistic. We define D(T4 + d’, T, j) to be the set of distances between the spa-
tially and temporally optimally aligned trajectories, where d’ = d(T'4, T, j) is the
optimal spatial shift between the temporally shifted (by 7 time steps) trajectories.

The procedure for defining this set is similar to above; calculate the optimal j for
which the mean distance between space (translation of d') and time (time-shift of j)
shifted positions is minimised, using an exhaustive search. Once j has been calculated,
the set of distances D(T4 + d’, T, j) can be formed, and the usual statistics can be
calculated.

When the trajectories are spatio-temporally aligned, the mean value, u( D(T4 +
d’,Tg,j) ) is less than or equal to the mean value of the three other sets of distances;
when the trajectories are unaltered, spatially aligned, or temporally aligned.



2.6 Area between trajectories

The area between two trajectories provides time independent information. The trajec-
tories must be treated as paths whose direction of travel is known.

Given two paths A and B, the area between them is calculated by firstly calculating
the set of crossing points where path A and path B intersect. These crossing points
are then used to define a set of regions. If a path crosses itself within a region, then
the loop created is discarded by deleting the edge points on the path between where the
path crosses itself. This resolves the problem of calculating the area if a situation where
a path crosses itself many times occurs, as illustrated in Figure 6. Now the area between

Figure 6: Regions with self crossing trajectories. The shaded regions show the area
calculated.

the paths can be calculated as the summation of the areas of the separate regions. The
area of each region is calculated by treating each region as an n-sided polygon defined
by edge points (z;,y;) fori = 1,... n, where the first point is the intersection point,
the next points follow those on path A, then the second crossover point, back along
path B to the first point. i.e. the edge of the polygon is traced. Tracing the polygon,
the area under each edge segment is calculated as a trapezoid, each of these is either
added to or subtracted from the total, depending on its sign, which results from the
calculation of (z;41 — ;) (yi + yi+1)/2 as the area between the z-axis and the edge
segment from (z;, y;) t0 (2541, yir1). After re-arrangement Equation 9 shows the area
of such a region. (It does not matter which way the polygon is traced, since in our
computation the modulus of the result is taken).

Aregion = ‘% (((Zj Tip1Yi) + wlyn) - ((:Z;l T1Yi+1) + xny1)> ‘ ©)

The areas of each of the regions added together gives the total area between the paths,
and has dimensionality L2 i.e. mm?2. To obtain a useful value for the area metric,
the area calculated is normalised by the average length of the paths. This gives the
‘area’ metric on the same scale as the other distance statistics. It represents the average
time independent distance (in mm) between the two trajectories, and is a continuous
average distance, rather than the earlier discrete average distance.



3 Evaluation, results and discussion

Performance evaluation is performed on two tracking systems; a sports player tracker
[4] , and a vehicle tracker [3]. Figure 7 shows example footage used in each system.
First, the variability between two hand marked up trajectories is discussed.

Figure 7: Example footage used for tracking.

3.1 Comparison of two hand marked up trajectories

This section compares two independently hand marked up trajectories of the same soc-
cer player during an attacking run (both marked up by the same person, by clicking on
the screen using the mouse). There are small differences in the trajectories, and they
cross each other many times. The results are shown in Table 1, and the trajectories are

Figure 8: Two example hand marked up trajectories, showing the area between them,
and the displacements between positions at each time step.

shown graphically in Figure 8 with the area between the two paths shaded, and dark
lines connecting the positions on the trajectories at each time step. The second row
of Table 1 identifies an improvement in the similarity of the two trajectories if a small
spatial shift of d = (—58,74) in mm, is applied to the first trajectory. As expected
in hand marked up data, the two trajectories are optimally aligned in time (time-shift

j=0).



Metric mean | median | min | max | s.d | ‘area’
D(Ta,Tg) 134 115 0| 444 | 89 56
D(Ta + (—55,74),Tg) 110 92| 10| 355 | 72 42
D(T4,Tg,0) 134 115 0| 444 | 89 56
D(T4a + (—55,74),Tg,0) 110 92| 11| 355 | 72 42

Table 1: Results of trajectory evaluation. All distances are in mm.

3.2 Sports player tracker example

This section compares a tracked trajectory, T, to a hand marked up trajectory Ts.
The sports player tracker [4] identifies the ground plane position of the players, which
is taken as the mid-point of the base of the bounding box around the player, and is
generally where the players’ feet make contact with the floor. Figure 9 qualitatively
illustrates the shifted trajectories, whilst Table 2 quantitatively highlights the systematic
error present in this sequence.

(c) Temporally aligned trajectories

Figure 9: (a)-(d) Example trajectories over 70 frames. Trajectory T from tracker
compared to T - the hand marked up trajectory. The figures show the area between
them, and the displacements between positions at each time step.

If T is shifted by 500mm in the z-direction, and 600 — 700mm in the y-direction,
the differences between the trajectories fall significantly. This may be due to an invalid
assumption that the position of the tracked players is the mid-point of the base of the
bounding box around the player. This may be due to the player’s shape in these frames,

tracker error, or human mark up of the single point representing the player at each time
step.



Metric mean | median | min | max | s.d | ‘area’
D(T¢,Tg) 890 859 | 393 | 1607 | 267 326
D(T¢ + (510,—-710),TB) 279 256 | 40 67 | 145 133
D(T¢,Tr,—9) 803 785 | 311 | 1428 | 237 317
D(Tc + (551, —618),Tr, —2) 263 230 | 52| 673 | 129 138

Table 2: Results of trajectory evaluation. All distances are in mm.

3.3 Car tracker example

This section compares trajectories from a car tracker [3] with manually marked up
ground truth positions. In this example, the evaluation is performed in image plane
coordinates (using 352 x 288 resolution images), on a sequence of cars on an inner city
bypass, a sample view is shown in Figure 7.

(b) Spatially aligned trajectories

(c) Temporally aligned trajectories (d) Temporally and spatially aligned

Figure 10: (a)-(d) Three pairs of example trajectories over 200 frames. Trajectory T4
from tracker compared to T'g - the hand marked up trajectory, with the area between
them shaded.

Trajectory comparison is performed on three trajectories of cars in the scene, each
over 200 frames in length. Figure 10 displays these trajectories along with the ground
truth, and Table 3 details the quantitative results, from which it can be seen that there is
little systematic error in the system, with each car’s centroid generally being accurate
to between 1 and 3 pixels.



Left Path

Metric mean | median | min | max | s.d | ‘area’
D(Ta,TB) 1.7 13| 01| 71113 0.6
D(T4 + (-0.2,-0.8),TB) 1.6 13| 02| 65|11 0.5
D(Ta,Tg,1) 15 13| 01| 511038 0.6
D(T4 +(0.8,-0.1), T, 1) 1.3 12| 01| 52108 0.5
Middle Path
Metric mean | median | min | max | s.d | ‘area’
D(T4,TB) 3.0 23| 04 (124 | 22 1.8
D(T4 + (1.9,-0.9),Tg) 2.3 19| 01112 | 20 0.9
D(T4,Ts,1) 2.9 23| 05| 87|14 1.8
D(T4 + (3.1,1.8),T5,3) 1.3 13| 01| 36|07 0.6
Right Path
Metric mean | median | min | max | s.d | ‘area’
D(T4,TB) 3.2 29| 03| 97|18 2.1
D(T4 + (2.3,-0.2),TB) 25 23| 01| 86|14 1.2
D(T4,Ts,0) 3.2 23| 03| 97|18 2.1
D(T4 + (2.9,2.0),T5,2) 1.7 16| 01| 6.0 0.9 1.0

Table 3: Results of trajectory evaluation. All distances are in pixel units.

4 Summary and conclusions

Quantitative evaluation of the performance of computer vision systems allows their
comparison on benchmark datasets. It must be appreciated that algorithms can be eval-
uated in many ways, and we must not lose target of the aim of the evaluation. Here, a set
of metrics for positional evaluation and comparison of trajectories has been presented.
The specific aim has been to compare two trajectories. This is useful when evaluating
the performance of a tracker, for quantifying the effects of algorithmic improvements.
The spatio/temporally separated metrics give a useful measure for identifying the preci-
sion of a trajectory, once the systematic error is removed, which may be present due to a
time lag, or constant spatial shift. There are many potential obvious uses for trajectory
comparison in tracker evaluation, for example comparison of a tracker with Kalman
Filtering and without [4] (clearly this affects any assumption of independence).

It is also important to consider how accurate we require a computer vision system
to be (this may vary between detection of a target in the scene and precise location of
a targets’ features). Human mark up of ground truth data is also subjective, and there
are differences between ground truth sets marked up by different individuals. If we
require a system that is at least as good as a human, in this case, the tracked trajectories
should be compared to how well humans can mark up the trajectories, and a statistical
test performed to identify if they are significantly different.
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