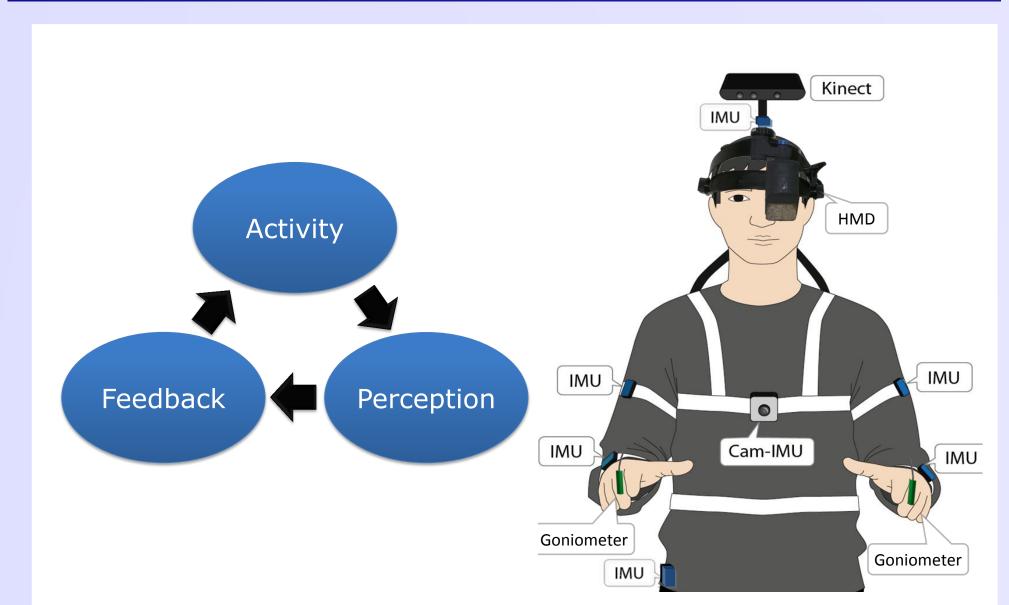
# Egocentric Activity Monitoring and Recovery

A. Behera, D. C. Hogg and A. G. Cohn School of Computing, University of Leeds, UK {A.Behera|D.C.Hogg|A.G.Cohn}@leeds.ac.uk

## **UNIVERSITY OF LEEDS**



### Motivation



#### **Pairwise Relational Features**

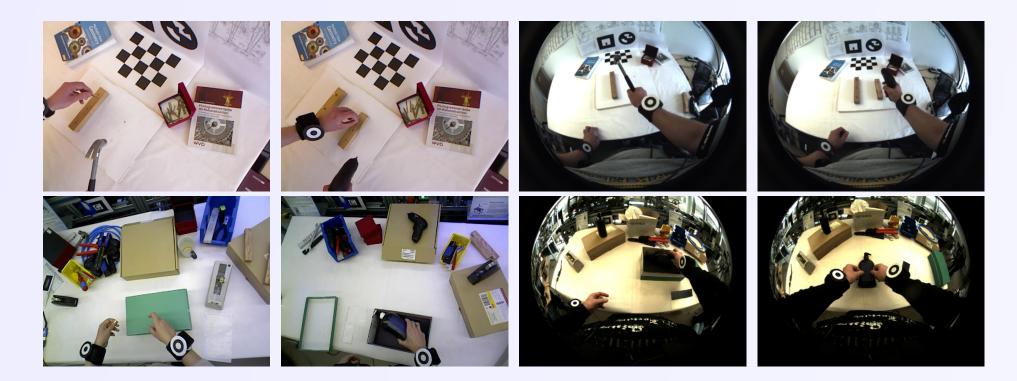
At each time step *t*, the spatiotemporal relation between the objects  $o_m$  and  $o_n$  is represented by

$$\mathbf{r} = (d_{m,n}, \frac{\dot{d}_{m,n}}{d_{m,n} + \epsilon}) \in \Re^2$$

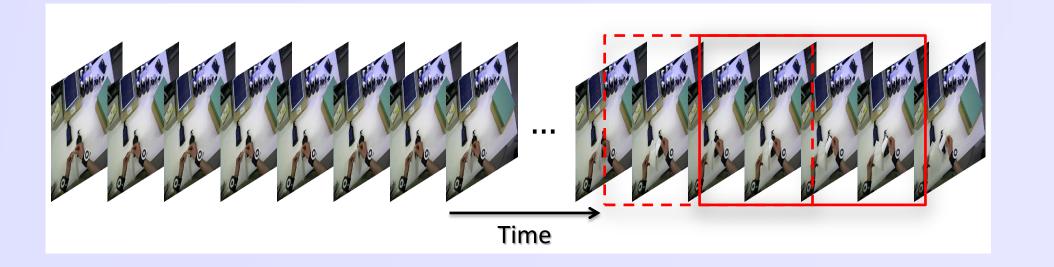


#### Experiments

We have evaluated our hierarchical framework on two datasets: 1) *hammering nails and driving* screws and 2) labelling and packaging bottles. We used a sliding window of 2-seconds duration with 50% overlap and 'one-vs-all-subject' evaluation strategy.



In *bag-of-features* approaches, detection accuracy is often dependent on spatio-temporal distributions of features [1]. Additionally, these approaches are focused for classifying activities after fully observing the entire sequence.

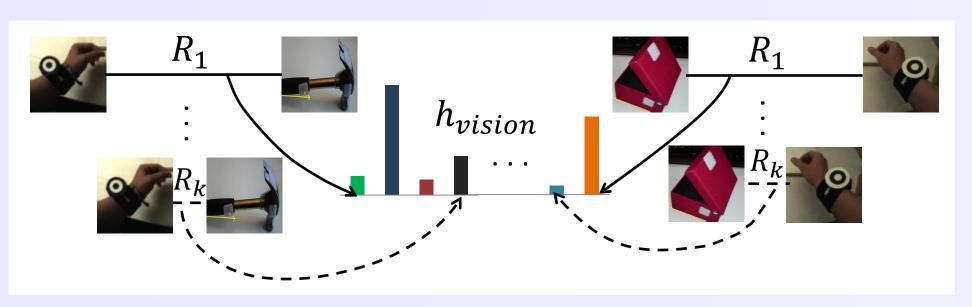


Assignment of atomic event and activity labels to the live image sequences.

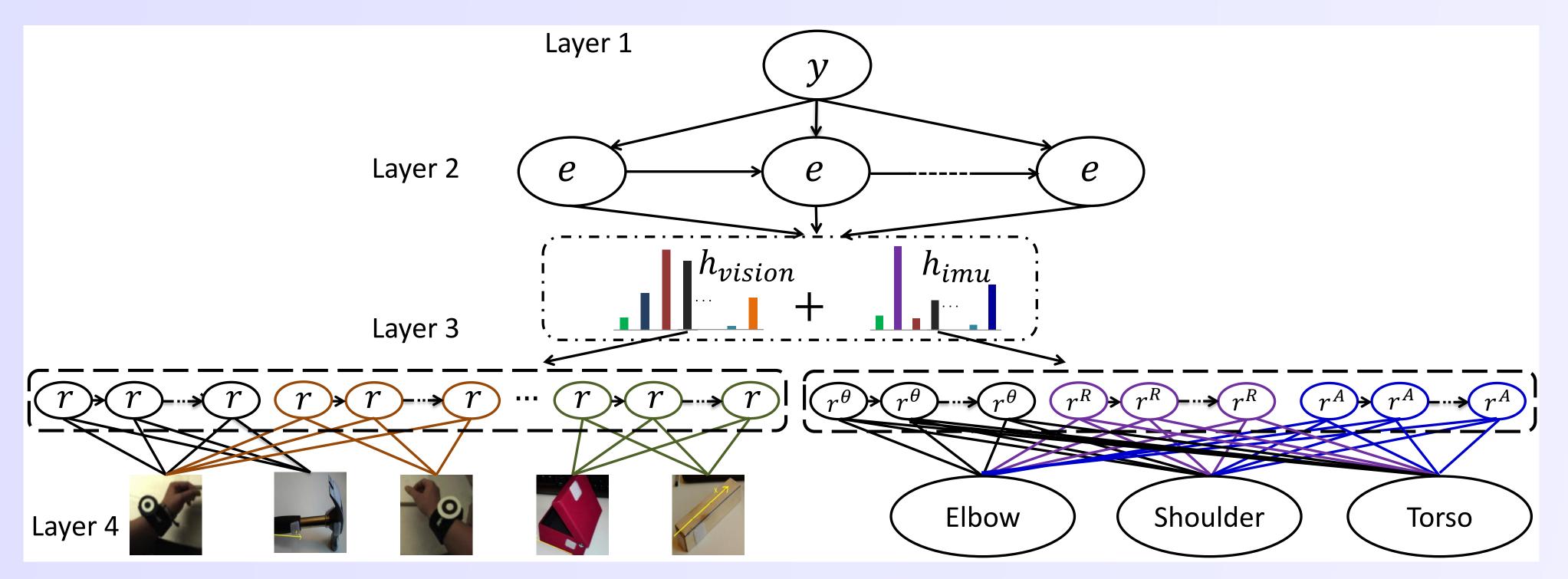
#### Category-specific bin assignment to BoR histogram.

We describe the relational feature r with K possible relational words  $\alpha_1 \dots \alpha_K$  by creating the relational vocabulary.

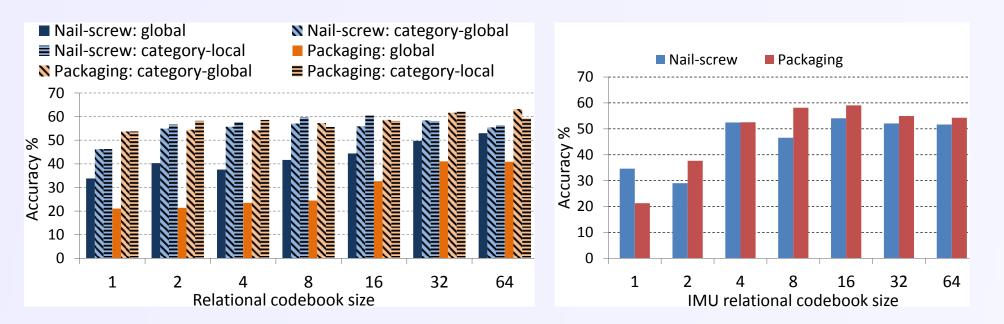
 $\alpha(r) = \arg\min_{\forall \alpha} D(\alpha, r)$ 



Category-specific bin assignment to BoR histogram.



Snapshots from the *hammering nails and driving screws* and the labelling and packaging bottles datasets.



Average performance with varying relational codebook size for 'one-vs-all-subjects' experiments using only  $h_{vision}$ (left) and  $h_{imu}$  (right).

#### **Results and Discussion**

All of our results are presented as classification accuracy over all windows.

Hammering nails and driving screws.

|       | Vision | IMU  | STIP | Vision<br>IMU | Vision<br>STIP | IMU<br>STIP | Vision<br>IMU<br>STIP |
|-------|--------|------|------|---------------|----------------|-------------|-----------------------|
| $s_1$ | 65.7   | 65.2 | 65.9 | 73.4          | 78.1           | 70.7        | 75.4                  |
| $s_2$ | 64.5   | 67.5 | 67.2 | 72.3          | 73.4           | 77.5        | 77.2                  |
| $s_3$ | 61.7   | 53.5 | 73.1 | 62.0          | 72.2           | 64.9        | 68.4                  |
| $s_4$ | 38.0   | 10.3 | 9.2  | 25.9          | 35.6           | 11.0        | 18.7                  |
| $s_5$ | 72.5   | 74.0 | 77.4 | 80.3          | 82.1           | 84.7        | 86.6                  |
| Avg   | 60.5   | 49.8 | 58.6 | 62.8          | 68.3           | 61.7        | 65.3                  |

Overview of our hierarchical framework: atomic events e are inferred using spatiotemporal pairwise relations r from observed objects and wrists, and relations  $r^{\theta}$ ,  $r^{R}$  and  $r^{A}$  between body parts (*elbow-shoulder* and *shoulder-torso*) using inertial sensors. Activities y are represented as a set of temporally-consistent e.

In the proposed hierarchical framework, we address the following principal contributions:

- 1. Recognition of atomic events using onbody sensors in order to assist users by providing *on-the-fly* instructions.
- 2. A learnt representation for the spatial and kinematic relationship between pairs of objects.

The relational words are encoded along with object category to represent a unique bin in the histogram of our *bag-of-relations* i.e.

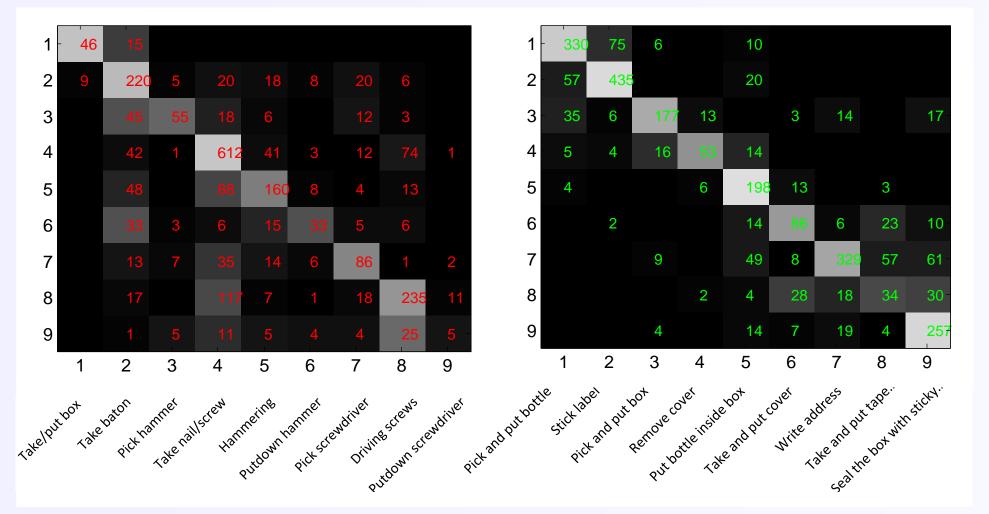
 $b_i = ||\mathcal{A}_i||$  $A_i = \{(\alpha_k, p)\}, k \in \{1 \dots K\} \text{ and } p \in \{1 \dots P\}\}$ 

### Learning and Inference

#### Labelling and packaging bottles.

|                       | Vision | IMU  | STIP | Vision<br>IMU | Vision<br>STIP | IMU<br>STIP | Vision<br>IMU<br>STIP |
|-----------------------|--------|------|------|---------------|----------------|-------------|-----------------------|
| $s_1$                 | 61.3   | 38.2 | 31.4 | 62.4          | 64.5           | 36.3        | 65.4                  |
| <i>s</i> <sub>2</sub> | 53.5   | 71.2 | 50.5 | 67.7          | 64.5           | 75.4        | 78.3                  |
| <i>s</i> <sub>3</sub> | 63.0   | 59.9 | 61.9 | 80.8          | 66.6           | 69.4        | 82.1                  |
| <i>s</i> <sub>4</sub> | 76.1   | 74.8 | 56.0 | 85.6          | 84.5           | 71.3        | 89.4                  |
| <i>S</i> <sub>5</sub> | 56.5   | 51.3 | 56.5 | 70.4          | 65.3           | 66.6        | 70.4                  |
| Avg                   | 62.1   | 59.1 | 51.3 | 73.4          | 69.1           | 63.8        | 77.1                  |

For both datasets, vision (60.5%, 62.1%) performs better than the other two individual representations IMU (49.8%, 59.1%) and STIP (58.6%, 51.3%).



3. A histogram-based representation that summarises the relational structure between sets of objects within a temporal window, and provides the basis for atomic event classification.

4. Demonstrates the viability of the approach within an industrially motivated setting.

 $h_{imu,t}$  and  $h_{vision,t}$  are generated using bagof-relations. Then a discriminative function  $e = f(h_{imu,t}, h_{vision,t})$  is learned using a multi-class SVM. Then,  $P(e_t|e_{t-1})$ ,  $P(e_1)$  and  $P(e_t|e_1 \dots e_{t-1}, y)$  are learned from the training examples. During prediction at time *t*, the most probable atomic event  $\bar{e}_t$  and activity  $(\bar{y}_t)$  label corresponding to the observed histogram  $h_t$  are computed as:

 $P(\bar{e}_t|h_t) \propto P(\bar{e}_t)P(\bar{e}_t|h_t, f(h_t))P(\bar{e}_t|\bar{e}_{t-1})$  $\bar{e}_t = \arg\max\{P(\bar{e}_t|\bar{h}_t)\}$  $\bar{y}_t = \arg\max\{P(\bar{y}_t|\bar{e}_t)P(\bar{e}_t|\bar{h}_t)\}$  $\bar{e}_{t+1} = \arg\max\{P(\bar{e}_{t+1}|\bar{e}_1\dots\bar{e}_t,y)\}$ 

Confusion matrix using  $h_{vision+imu}$  for a) hammering nails and driving screws and b) labelling bottles and packaging dataset.

### Acknowledgment

This research is supported by EU FP7 grant to the COG-NITO (www.ict-cognito.org, ICT-248290) project. We also thank our collaborators in the COGNITO partners.

#### References

[1] Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008).