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Abstract
Live workflow monitoring and the resulting
user interaction in industrial settings faces a
number of challenges. This paper attempts to
address these problems by inducing a struc-
tural workflow model from multiple expert
demonstrations. When interacting with a naive
user, this workflow is combined with spatial
and temporal information, under a Bayesian
framework, to give appropriate feedback and
instruction. Structural information is cap-
tured by translating a Markov chain of actions
into a simple place/transition Petri-net. This
novel petri-net structure maintains a continu-
ous record of the current workbench configura-
tion and allows multiple sub-sequences to be
monitored without resorting to second order
processes. This allows the user to switch be-
tween multiple sub-tasks, while still receiving
informative feedback from the system.

Motivation
In ‘state-of-the-art’ HMM/CFG approaches,
detection accuracy is often dependent upon
the final re-estimation of the Viterbi path, far
too late for live activity recognition and user
instruction. Additionally, CFG structures are
incapable of capturing certain real workflow
features such as limited depth recursion and
temporally independent subtasks, while hand
crafted workflows can fail to capture expert
behaviour [1]. Moreover, Petri-net formalisms
can be easily translated into human readable
and editable workflow formats in the form of a
graph of states, transitions, arcs and markers.

A simplified representation of an induced Petri-net, show-
ing parallel sequences and recursive processes.

In the proposed induced Petri-net workflow
model, we address the following HMM/CFG
shortcomings.

1. Maintains ‘on-line’ classification accuracy
from partial information – enabling the
accurate instruction of a live user.

2. Exploits a marker based transition net-
work to capture the structural properties
of the workbench.

3. Provides structural classification con-
straints that can be translated into real
workflows.

4. Successfully trains over relatively sparse
annotated data sets.

5. Induces and exploit workflows from ex-
ample activity sequences – capturing
what is done not what ‘should’ be done.

Relational Feature Quantisation
At each time step t, the relation between a pair
of objects is represented as a real valued vector,
which is composed of the separation and the
first derivative of separation with respect to
time i.e. ri,jt = (di,jt , ḋ

i,j
t ) ∈ <2, for ∀i < j [2].

Quantisation of pairwise relations between key objects in a
workbench for a varying number of latent HMM states.

Naive Bayes Model Formation
At each timestep, a Histogram of Pairwise
Relationships (HoPR), ht = (hq1t , · · · , hqMt ) is
computed over a sliding window of size w.

Histogram of pairwise relations (HoPR) over a sliding
window on quantised pairwise relations between all key
objects.

A workflow instance e is defined as a tu-
ple (He, g), where He = h1 · · ·ht, representing
a series of HoPR, and g assigns an action to
each HoPR. Activity ai ∈ A occurs in e, if ∃:
hj ∈ He with g(hj) = ai. Using a SVM, the
model first computes the probability distribu-
tion P (ait|ht,∆) over ai, where |∆| = |A|, and
f∆: δi ∈ ∆→ ai ∈ A.

Absolute temporal prior of atomic event a2 in the workflow
instance e1.

Absolute temporal prior of atomic event a9 in the workflow
instance e1.

In the second, the model computes the absolute
temporal prior P (ait|t,Ω) = ω(ai,t)∑|A|

j=1 ω(aj ,t)
over

atomic action ai by using a Gaussian model

ωi ∈ Ω, where ω(ai, t) = 1√
2πa2i,σ

e
−

(t−ai,µ)2

2a2
i,σ .

Finally, a transition probability matrix
P (ait|θ, St−1) =

∑|St−1|
j=1 P (sit|s

j
t−1, d

i,j
γ )P (sjt−1)

is calculated according to the induced Petri-net
structure to capture the structural transitions
of the induced workflow [3]. sjt−1 ∈ St−1 and
di,jγ equals the minimum number of transitions
between sit and sjt−1.

Activity Recognition
At each timestep, the most likely action is
computed using naive Bayes i.e. aMAP =
arg max

at

{P (at|ht,∆)P (at|t,Ω)P (at|θ, St−1)}

Similarly, given the current believed state of
the Petri-net, the next likely action at+1

MAP =
arg max

at+1,at+1 6=at
{P (at+1|θ, St)}.

A detailed view of component (d) by transitioning from a
place/transition to a Petri-net we can limit the number of
recursive transitions within the workflow.

Evaluations and Discussion
The dataset consists of two tasks performed
eight times by two people on the same work-
bench. The workbench consists of 9 key objects,
each of which is tracked by a VICON marker.

Model Accuracy %
On-line-HMM 12.2
pLSA 36.8
HoPR-SVM 62.5
HoPR-NB 70.1

A state-of-the-art HMM approach performed
well for off-line classification (77.2%). How-
ever, the performance deteriorates significantly
for on-line (12.2%). HoPR-NB outperforms the
state-of-the-art, the unconstrained HoPR-SVM
model for leave-one-out classification accuracy.
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Confusion matrix for the HoPR Naive Bayes model.

2 4 6 8 10 12 14 16 18 20 22

5

10

15

20

Event Ground Truth

C
la

ss
ifi

ca
tio

n

 

 

0

10

20

30

40

50

60

70

80

% Correct

Confusion matrix for the HoPR SVM model.

The classification results reveals that due to the
structural constraints of the Petri-net, the ma-
jority of classification errors occur at the transi-
tion points from one action to the next.
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