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Abstract. We present a method for real-time monitoring of workflows
in a constrained environment. The monitoring system should not only
be able to recognise the current step but also provide instructions about
the possible next steps in an ongoing workflow. In this paper, we address
this issue by using a robust approach (HMM-pLSA) which relies on a
Hidden Markov Model (HMM) and generative model such as probabilis-
tic Latent Semantic Analysis (pLSA). The proposed method exploits the
dynamics of the qualitative spatial relation between pairs of objects in-
volved in a workflow. The novel view-invariant relational feature is based
on distance and its rate of change in 3D space. The multiple pair-wise
relational features are represented in a multi-dimensional relational state
space using an HMM. The workflow monitoring task is inferred from the
relational state space using pLSA on datasets, which consist of workflow
activities such as ‘hammering nails’ and ‘driving screws’. The proposed
approach is evaluated for both ‘off-line’ (complete observation) and ‘on-
line’ (partial observation). The evaluation of the novel approach justifies
the robustness of the technique in overcoming issues of noise evolving
from object tracking and occlusions.

Keywords: Qualitative Spatio-temporal Relations, Workers Instructions,
Activity Recognition, Hidden Markov Model (HMM), Probabilistic La-
tent Scemantic Analysis (pLSA)

1 Introduction

A workflow is a temporally ordered set of procedural steps for accomplishing a
task in which people and tools are involved in each step of the process. In an
industrial environment, the aim of workflow monitoring is to assist operators un-
familiar with a workflow by providing on-the-fly instructions from an automatic
system. This enables continual interaction between operators and the system
while performing a workflow. In an on-going workflow, the proposed monitoring
system should be able to anticipate the next possible tasks and recognize the
deviations from the correct workflows which may lead to quality and/or health
and safety problems. In our case, the operators’ instructions will be provided via
augmented reality, video clips and/or text using a see-through Head Mounted
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Display (HMD)[27]. Therefore, the monitoring system requires a general ability
to learn, analyze and model workflow patterns. This associates to a problem of
activity recognition.

The more general problem of activity recognition is widely studied within
Computer Vision. Much of this work has focused on the development of proba-
bilistic models over object configuration spaces and estimated from training data.
Examples include Hidden Markov Models [5, 25, 17, 6], stochastic context free
grammars (SCFG) [15, 1], echo state networks (ESN) [22], propagation networks
(P-nets) [21], Past-Now-Future networks (PNF-networks) [19] and Bayesian net-
works [12, 11]. Very often the configuration space is confined to the location and
motion of objects within a scene based frame of reference [14, 9]. Most of these
models consider only the behaviour of an individual object, such as location and
speed in the image plane. Though an activity recognition using a trajectories-
based model is powerful, the model complexity increases quadratically with an
increase in interactions between multiple objects participating in a task. Fur-
thermore, the tracking algorithm often fails due to occlusion and inability to
distinguish between foreground and background.

In this paper, we explore the activity recognition problem in the context of
workflow by using qualitative spatio-temporal pair-wise relations between human
body parts, tools and objects in a workspace. These relations are established
using a relational feature vector representing distance and the rate of change of
distance between pairs of objects in 3D space. The motivation for using relational
features is to enable the model to follow the ongoing workflow, even though
an object is missing due to occlusion or scene complexity. This is possible by
considering the spatio-temporal configurations of other observed objects. For
example, during the task of hammering, if the individual’s hand moves towards
the nail box and back to the work bench, it is most likely that the he/she has
picked up a nail, by considering the spatio-temporal configurations between nail
box and hand during the ‘retrieve-nail’ subtask. Similarly, if the participant’s
hand moves towards the screw box, the system should then assert a violation of
workflow since the ongoing task is hammering of nails.

In the present study, we consider all possible pair-wise relations among ob-
jects in a given workspace. These relations are then represented in a relational
state space. We propose a novel method to model workflow from this relational
state space by using probabilistic Latent Semantic Analysis (pLSA) [10]. We
evaluate our proposed technique with the workflows of hammering nails and
driving screws. In this model, each workflow sequence consists of multiple sub-
sequences of primitive events.

2 Related Work

Activity recognition in the context of workflow is still an active field of research.
In this section, a brief description of related work on workflow monitoring and
computer vision-based activity recognitions most associated to the context of
workflow, is presented.
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Veres et al. [22] proposed a method for monitoring workflows in a car as-
sembly line. The method uses a global motion descriptor by sampling an input
image sequences by a fixed overlapping spatial grids over whole image. Each grid
is represented by local motion descriptor based on pixel intensity. The global mo-
tion descriptor for an image at a given timestamp is the concatenation of these
local motion descriptors. Eco state networks (ESN) [13] are used as a time se-
ries predictor for workflow monitoring. Pody et al. [18] uses a hierarchical-HMM
with observation of 3D optical flow-features for monitoring a hospital’s operat-
ing rooms. The 3D flow-features are extracted by quantisig the optical flow of
pixels inside a spatio-temporal cell of fixed volume. The top-level topology of the
hierarchical-HMM is temporally constrained and the bottom level sub-HMM is
trained independently with labelled sub-sequences. Pinhanez and Bobick intro-
duced the Past-Now-Future networks (PNF-networks) [19] using Allen’s tem-
poral relations [2] to express parallelism and mutual exclusion between differ-
ent sub-events. In order to gain a detection of actions and sub-actions, Allen’s
interval algebra network is mapped into a simpler three-valued PNF-network
representing temporal ordering constrained between the start and end timing
of event instances. Shi et al. [21] presented propagation networks (P-nets) to
model and detect primitive actions from videos by tracking individual objects.
P-nets explicitly model parallel streams of events and are used for classifica-
tion. The detailed topology is handcrafted and trained from partially annotated
data. Moore and Essa [15] use stochastic context-free grammars (SCFG) to rec-
ognize separable multi-tasked activities from a video illustrating a card game.
All relations between the tracked events are described using manually-defined
production rules.

In another context, event recognition in meetings using layered-HMMs is
proposed by Oliver et al. [17]. The HMMs operate in parallel at different levels
of data granularity which allow event classification using multi-modal features.
An integrated system for modelling and detecting both high- and low-level be-
haviours is demonstrated by Nguyen et al. [16]. The system uses the trajectories
of occupants in a room consisting of pre-defined multiple cells in a given zone.
The goal is to recognize behaviours that differ in the occupied cells and in the
sequence of their occupation.

In most of the above-mentioned models: 1) object trajectories in the image
plane are used as a feature descriptor. However, tracking algorithms often fail
to detect and track objects efficiently due to variations in workspace settings,
occlusions as well as dynamic or cluttered background. We partially address this
issue by using spatio-temporal relational configurations of the objects involved.
2) The models take into consideration a limited number of objects at a given
time. The complexity of the learning algorithm increases with the involvement
of more objects or interactions, thereby hindering ‘real-time’ monitoring. This
is overcome by the proposed probabilistic Latent Semantic Analysis (pLSA). 3)
Additionally, we employ view-invariant relational feature for our model whereas
view-dependent features are used in most models [22, 18, 17].
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Fig. 1: Workflow monitoring model overview: a) tracked objects in a workspace, b)
pair-wise relational feature, c) state space representation of each pair-wise relations,
and d) reflections of pair-wise relations (state space) in the workspace.

3 Qualitative Relations to Workflow Patterns

The proposed model for workflow activity monitoring comprises of four steps.
The systematic procedure for this is shown in Fig. 1. In the first step, the rel-
evant objects in a given workspace are tracked. The tracking system provides
instantaneous 3D positions of objects of interest at each time frame (Fig. 1a).
Secondly, a view-invariant relational feature vector for each pair of objects for
each time point, is computed (Fig. 1b). In the third step, these relations are
quantised into a finite number of states using an HMM (Fig. 1c and Fig. 1d). In
the final step, the framework uses a generative process of pLSA for monitoring
and recovering workflow activity from the relational configuration of quantised
pair-wise relations as shown in Fig. 1d.

3.1 Feature for Qualitative Spatial Relations

Our model is based on the joint motion of a collection of N key objects relevant
to the task at hand. Let (x1

t ,x
2
t , ...,x

N
t ) be the respective 3D positions of these

objects at time t, where xit = (x, y, z)it. The joint motion is described in a view-
invariant fashion as the set of spatial and kinematic relations between every
pair of key objects. At each time step, the relation between a pair of objects
i and j is represented by a real valued vector composed of the separation and
the first derivative of separation with respect time i.e. ri,jt = (di,jt , ḋ

i,j
t ) ∈ <2,

where di,jt = ‖xit−xjt‖ for ∀i < j. For convenience, we order the set of pair-wise
relations {ri,jt , i < j} and express as R = [rmt ]M×T×2, where m = 1 . . .M and
M = N(N − 1)/2 and T is the number of time steps. We now discretise the
pair-wise feature vectors using an HMM to capture the temporal dependencies,
and after discretisation it will be represented by corresponding HMM states
S = [smt ]M×T .

3.2 State Space Representation of Spatial Relations

The state space S = [smt ] representation of the corresponding relational feature
set R = [rmt ] is carried out using an HMM (Fig. 1c). This is defined as a quintuple
(Q,R, π,A,B), where Q is a finite non-empty set of ‘relational’ states, R is the
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Fig. 2: State space (Viterbi path) representation of pair-wise relations using an HMM
of 10, 12 and 16 states respectively (from left). Each colour represents a particular
state in the HMM.

input relational feature, π = {πq} is the starting probability for an element
q ∈ Q, A = {aq,q′} are the state transition probabilities from the state q to state
q′ and B = {bq(r) = N(r, µq,

∑
q)} is the output function, which is represented

as a Gaussian density with mean vector µq and covariance matrix
∑
q for the

state q emitting feature r. The optimal parameter λ∗ = (π∗, A∗, B∗) of the HMM
is estimated using Baum-Welch forward-backward algorithm [3] from a training
dataset consisting of W workflow sequences, where each workflow sequence is
represented by M parallel sequences of pair-wise relational features:

λ∗ = argmax
λ

W∏
w=1

M∏
m=1

P (rm,w|λ)

P (rm,w|λ) =
∑

all Q

P (rm,w|Q,λ)P (Q|λ) =
∑

all Q

T∏
t=2

πqbqt(r
m,w
t )aqt−1,qt

(1)

where rm,w denotes the mth series of pair-wise relational features from the wth

workflow sequence and consists of T time steps. The Viterbi algorithm [24] is used
to find the most likely hidden states sequence from a given observed sequence
of relational feature using the optimal parameter λ∗. Fig. 2 demonstrates the
pair-wise relations with the varying number of states Q in the HMM.

3.3 pLSA for Modeling Spatial Relations

A workflow sequence can be decomposed into multiple sub-sequences. The de-
composition granularity often depends on type of the workflows and the meth-
ods used for its realisation. In the case of ‘hammering nail’ and ‘driving screws’
workflows, we use a set of primitive events (Table 1) which have been manually
annotated. The generative model of pLSA is used for this multi-class classifica-
tion problem instead of discriminative classification techniques such as support
vector machine i.e. SVM.

Probabilistic latent space models [10, 4] were initially proposed to automat-
ically discover the recurrent themes or topics from a corpus of text documents.
They are used to analyze topic distributions of documents and word distribu-
tions in a topic. The model is estimated from the co-occurrence of words and
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Fig. 3: Partition of a workflow sequence into primitive events Ep, pair-wise relations
χm and spatial relations sp,mt . In [4], these are equivalent to ‘corpus’, ‘document’ and
‘word’ respectively.

documents. In our work, we extract this by dividing a workfow into subsequences
of primitive events (Ep=1...K in Fig. 3). Each pair-wise relation in a primitive
event is represented by ‘document’ (χm=1...M in Fig. 3). Every quantised relation
(sp,mt ) in a pair-wise relation is characterised by ‘word’. In our framework, each
primitive event symbolises a corpus and is modelled separately using a pLSA,
namely a ‘corpus-model’.

The spatio-relational structure of key objects changes over time with the
progress of a primitive event. In our ‘corpus-model’, those underneath relational
structures for that primitive event, are captured by the distribution of latent
variable, which is known as ‘topics’ in the pLSA models. The latent variable itself
characterised by probability distribution over the relational states in each pair-
wise relation belongs to the primitive event. Therefore, we use all the instances
of a given primitive event from all training sequences to train the corresponding
‘corpus-model’. During evaluation of an unseen workflow sequence, the model
uses a sliding window of duration T and decides its association with the seen
primitive events based on maximum posterior probability.

We begin with some notations for our ‘corpus-model’. A workflow sequence
is a collection of K primitive events represented by E = {Ep=1...K}. A primitive
event is a group of M parallel pair-wise relations indicated by χ = {χm=1...M}.
The mth pair-wise relation in the pth primitive event χpm = {sp,mt=1...τ} is a se-
quence of τ quantised spatial relations, where sp,mt ∈ Q (Fig. 3). In fact, in a
given primitive event, all pair-wise relations will have the same number of quan-
tised spatial relations i.e. the same τ for ∀m. The pLSA-model parameter for
each primitive event is learned from the training examples. This is done by con-
sidering all instances of the same primitive event appearing in all the training
sequences (Fig. 3). For convenience, from here onwards χp represents the collec-
tion of M pair-wise relations and the corresponding quantised spatial relations
sp for all instances of primitive event Ep appeared in the training sequences.

For each primitive event Ep, our aim is to find the joint distribution Pp(χ
p, sp)

between the pair-wise relations χp and spatial relations sp belonging to the Ep

(p = 1 . . .K). This is done by using a latent variable model for general co-
occurrence of χp and sp which associates an unobserved class variable zp =
{zp1 , z

p
2 , . . . , z

p
Z} [10]. The model assumes the conditional independence of χp
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and sp given a latent variable zp. The graphical representation of our pLSA is
shown in Fig. 4. The joint probability Pp(χ

p, sp) can be expressed as:

Pp(χ
p, sp) = Pp(χ

p)Pp(s
p|χp) (2)

where, Pp(s
p|χp) =

Z∑
k=1

Pp(s
p|zpk)Pp(z

p
k|χ

p) (3)

The conditional probabilities Pp(s
p|zpk) and Pp(z

p
k|χp) are learned using the EM

algorithm [8] by maximizing the following log-likelihood function:

Lp =
∑
χp

∑
sp

n(χp, sp)log(Pp(χ
p, sp)) (4)

where the E-step is shown as:

Pp(z
p|χp, sp) =

Pp(s
p|zp)P (zp|χp)∑

zp′ Pp(s
p|zp′)P (zp′ |χp)

(5)

and the M-step is:

Pp(s
p|zp) =

∑
χp n(χp, sp)Pp(z

p|χp, sp)∑
rp

∑
sp′ n(χp, sp′)Pp(zp|χp, sp′)

(6)

Pp(z
p|χp) =

∑
sp n(χp, sp)Pp(z

p|χp, sp)
n(χp)

(7)

where n(χp, sp) is the number of co-occurrences of the spatial relation sp and the
pair-wise relations χp in the primitive events Ep. The proposed ‘corpus-model’
computes the joint distribution Pp(χ

p, sp) for each Ep (p = 1 . . .K) by con-
sidering the temporally segmented subsequences representing the corresponding
primitive events in the training dataset of workflow sequences (Fig. 3). Dur-
ing recognition of an unknown workflow sequence, the co-occurrences matrix of
n(χ̂, ŝ) is computed by using a sliding window of duration T over it. At each
time step, the likelihood of co-occurrences matrix n(χ̂, ŝ) with respect to each
primitive event Ep is computed using the joint-distribution Pp(χ

p, sp) of Ep via
Eqn. 4. The unknown sliding window at each time step is assigned a primitive
event e∗ = argmax(L), where L = {L1, L2, . . . , LK} is the measured likelihood
from all primitive events.

3.4 Activity Monitoring

For workflow activity monitoring, the model is not only for the recognition of
ongoing activity but also for advising the agent on the next possible tasks. In
order to achieve this, a top-level workflow topology is required. Often, this top-
level topology is provided manually for a well-defined structured workflow [21,
15]. We achieve this by modelling event spaces with an HMM. The graphical
structure is shown in Fig. 4. The monitoring-HMM consists of K hidden states
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Fig. 4: The Generative pLSA model (left) and workflow monitoring-HMM (right)

denoting K primitive events. The observation likelihood for each hidden state
Et at time t is computed from the respective primitive event’s likelihood via
co-occurrence matrix n(χp, sp)t through a sliding window of duration T .

Pp(n(χp, sp)t|Et) =
∏
χp

∏
sp

Pp(χ
p, sp)n(χ

p,sp)t (8)

We are interested in the transition probabilities from state Et to state Et+1;
these are estimated via the Baum-Welch forward-backward algorithm [3] from
the training sequences.

Our model can also be readily used for abnormal behaviour detection while
monitoring a workflow. This can be achieved via examining the observation
likelihood (Eqn. 8) of the ongoing activities. A lower score of this likelihood
indicates higher abnormality of ongoing activities.

3.5 Handling of Occlusions

In general, the conventional HMM-based model faces difficulties in finding the
most likely state sequences for missing observations. Therefore, a continuous
most likely state sequences is not re-established once the observations reappear
after a certain duration. A bottom-level HMM is used for the quantisation of
pair-wise relations (section 3.2) and another top-level HMM is for monitoring
workflows.

The quantisation HMM successfully handles the occlusions by treating the
reappeared pair-wise relational observations rmt as a new sequence with a new
starting point from the time it reappeared. For these reappeared sub-sequences,
the model enforces the uniform starting probability π = {πq} of the HMM
parameter λ = (π,A,B) (section 3.2). As mentioned earlier, each pair-wise re-
lational feature sequence belonging to a workflow sequence is treated separately
for the quantisation. Therefore, the state space representation of pair-wise rela-
tion sequences corresponding to the observed objects are not affected by other
occluded objects.

The monitoring HMM tackles occlusions by taking advantage of the pLSA,
which uses the co-occurrence matrix n(χp, qp) to consider the occurrence fre-
quency of quantised spatial relations in a pair-wise relation. In the event of an
occlusion, pLSA masks off spatial relations corresponding to the occluded object.
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1. Grab nail baton 2. Place nail baton within
marked region

3. Release nail baton 4. Grab hammer

5. Retrieve nail 6. Insert nail 7. Place hammer 8. Hammering nail

9. Release nail 10. Put down hammer 11. Grab screws baton 12. Placed screw baton
within marked region

13. Release screw baton 14. Pick screwdriver 15. Retrieve screw 16. Insert screw

17. Release screw 18. Move screwdriver 19. Switch on screw-
driver

20. Push down screw-
driver

21. Turn off screwdriver 22. Put down screwdriver 23. Unknown

Table 1: Primitive events for ‘hammering nails’ and ‘driving screws’ workflow se-
quences

4 Experiments

Our experimental datasets consist of two type of workflow sequence, 1) ham-
mering 3 nails and 2) driving 3 screws. Two individuals are used to carry out
the workflows on a bench. The sequences are captured using the vicon motion
capture system [23]. Vicon markers are placed on all key objects utilized in the
workflow including both wrists of the participants. This dataset consists of 9 ob-
jects (hammer, electric screwdriver, nail box, screw box, nail baton, screw baton,
left wrist, right wrist and a piece of wood). The workflows are carried out on the
workflow bench. Given the tools above, the user is asked to hammer 3 nails and
drive 3 screws into the respective nail and screw batons. Using the setup above,
a total of 16 (4 per participant per workflow) sequences are obtained. The vicon
system provides the output at 50 Hz and 6 DoF (3D positions and orientations)
for each tracked object while performing a task.

4.1 Evaluations

A total of 23 primitive events (Table 1) are identified for the ‘hammering nails’
and ‘driving screws’ workflows including an ‘Unknown’ event for time steps those
are not labeled. We evaluated our approach for both off-line and on-line recog-
nition. The off-line evaluation considers the whole workflow sequence for the
recognition. The on-line evaluation takes into account the samples from the be-
ginning until time step t, where t = {2, 3, . . . , T} and T is the total duration of
the workflow sequence.

The frame-wise recognition rate is compared with the baseline approaches.
The baseline evaluations use input as the 3D motion vectors vot = (ẋ, ẏ, ż)ot
for individual object o = 1, . . . , N at each time step t. The final motion vector
vt = (v1

t ,v
2
t , . . . ,v

N
t ) at a given time t is a single vector by stacking the individ-

ual motion vector. In this experiment, the length of vt is 27 for 9 objects. We
compare our approach with HTK-PaHMM [28, 25], SVM-Multiclass [20, 7] and
pLSA ‘topic-model’ [26, 10].

In the HTK-PaHMM model, there are 23 parallel-HMM representing 23 prim-
itive events in workflow sequences. Each HMM is trained separately with sub-
sequences of corresponding primitive events from training workflow sequences.
We use the HTK-toolkit [28] for this model.
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Methods Off-line On-line

HTK-PaHMM 77.40% 12.20%

SVM-Multiclass 24.90% 24.90%

pLSA 36.84% 36.84%

M-HMM-pLSA 61.51% 61.10%

Table 2: Performance comparison
for leave-one-out experiment

Fig. 5: Confusion matrix for the frame-wise
evaluation of 23 primitive events for the
leave-one-out experiment (off-line)

For the SVM-Multiclass representation, each primitive event is treated as
a class. A normalized [−1, 1] 3D motion vector vt at each time step t is used
as a input feature. As in HTK-PaHMM, the model is trained on the training
dataset comprising subsequences of primitive events using RBF-kernel. However,
the temporal dependency of vt is not considered. During testing of a workflow
sequence, the class label of an unknown vt at time t is inferred from the learnt
model.

For the pLSA ‘topic-Model’, the input motion vectors vt are represented as a
word w = {w1, w2, . . . , wK} by quantising it using k-means clustering algorithm.
Each primitive event symbolises a topic z = {z1, z2, . . . , z23}. In [26], ‘topic-
model’ is used for finding topics or themes corresponding to activities those are
frequently occurring in a scene. In our model, we know these topics (primitive
events) from the labelled workflow sequences. For each topic p, we compute
P (w|zp), p = 1 . . . 23 by counting the occurrence frequency of w. For an unknown
document d, we assign a topic z∗ = argmaxz(P (z|d)), where P (z|d) is estimated
using the procedure described in [10] without changing P (w|z). For this model,
document d is represented as a sequence of words w taken from a sliding window
of duration T̂ (1 sec in this evaluation). This model gave better performance on
our dataset for 100 clusters.

The performance of frame-wise comparison for the leave-one-out experiment
on 16 workflow sequences is shown in Table 2. The HTK-PaHMM model per-
formed better for the off-line evaluation. However, it gave very poor outcome for
the on-line. SVM-Multiclass and ‘topic-model’ do not consider temporal depen-
dency and performed reasonably well. Our HMM-pLSA ‘corpus-model’ gave the
best performance over all. The confusion matrix of our model for 23 primitive
events is shown in Fig. 5. The confusion matrix reveals that some frames in
the current primitive event are misclassified as either next or previous primitive
events. This is typical synchronisation error as ground-truth for the evaluation
is manually annotated.

Object trajectories captured in our motion capture system are reasonably
clean in comparison to vision-based tracking. In order to validate the robustness
of our approach, we injected random Gaussian noise of zero mean with varying
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Noise level
Inserted noise

during training
and testing

Inserted
noise during
testing only

Off-line On-line Off-line
No noise
σ = 0

61.51% 61.10% 61.51%

σ = 4 49.97% 48.90% 40.93%

σ = 10 52.00% 51.20% 34.56%

σ = 15 51.68% 50.40% 32.44%

σ = 20 50.95% 49.57% 28.44%

Table 3: Performance comparison of our
model for leave-one-out experiment with
the insertion of random noise to 1) both
training and testing workflow sequences, 2)
only testing sequences

Noise level
Inserted noise

during training
and testing

Inserted noise
during testing

only
Test

on P1

Test
on P2

Test
on P1

Test
on P2

No noise
σ = 0

53.21% 59.31% 53.21% 59.31%

σ = 4 52.24% 48.86% 42.92% 52.10%

σ = 10 51.59% 53.39% 46.59% 08.63%

σ = 15 53.53% 54.13% 39.80% 12.42%

σ = 20 48.77% 52.23% 27.68% 12.15%

Table 4: Inter participants off-line perfor-
mance comparison with random noise in-
serted in 1) both training and testing work-
flow sequences, 2) only testing sequences

standard deviation σ = {4, 10, 15, 20} in centimeters to the 3D positions of
objects in our workflow sequences. The frame-wise evaluations for both on-line
and off-line is presented in Table 3. The declining performance is less than 12%
for σ = 20 centimeters in both off-line and on-line experiments, when noise is
inserted into both training and testing sequences.

In our dataset, two participants P1 and P2 carried out an equal number of
workflows. We evaluated our method with workflows carried out by one par-
ticipant in training and the rest for testing, and vice versa. The performance
of frame-wise evaluation is shown in Table 4. Surprisingly, performance is com-
parable in most cases, although there is a large deterioration in performances
for higher added noise levels in test data only and with training on a single
participant.

4.2 Evaluation of Occlusions

The Vicon motion capture system [23] provides relatively clean data w.r.t. visual
analysis and is not enough to validate our hypothesis about handling occlusions.
Therefore, we evaluated our approach by removing one or more objects from
the testing workflow sequences, whereas the model was trained on sequences
by considering all objects. The average performance of complete removal of an
individual object in testing sequences and a leave-one-out experiment is shown
in Table 5. Removing static objects such as ‘wood piece’, ‘nail box’ and ‘screw
box’, the drop off in performance is less than 1%. However, the model gave
encouraging performance to the occlusion of actively involved objects such as
‘hammer’, ‘screwdriver’, ’left wrist’ and ‘right wrist’ (Table 5). We, then eval-
uated our model by removing two or more objects from the testing sequences.
In this evaluation, while removing two or more objects all possible combinations
of objects are considered and the average performance is shown in Fig. 6. The
method gave accuracy > 50% for the complete occlusion up to two objects.
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Occluded objects Off-line (Average)

screwdriver 58.61%

wood piece 60.98%

nail baton 56.03%

hammer 48.52%

nail box 59.90%

screw baton 55.11%

screw box 61.49%

left wrist 51.66%

right wrist 55.27%

Table 5: Leave-one-out experiment with
complete occlusion of an object in the
testing sequences. The performance is
61.51% without occlusion

Fig. 6: Recognition performance (off-line)
for the leave-one-out experiment with com-
plete occlusion of 0-6 objects.

5 Conclusion

In this work, we proposed an innovative approach for real-time monitoring of
workflows. The proposed method uses a novel view-invariant qualitative spatial
feature, which is extracted by considering distance and rate of change of distance
between a pair of objects in 3D space. The dynamics of this pair-wise relational
feature is captured using an HMM. Realisation of workflows from the relational
state space is carried out using a ‘corpus-model’, which is derived from proba-
bilistic Latent Semantic Analysis (pLSA). Each primitive event in a workflow
is modeled separately using our ‘corpus-model’. In order to predict the next
possible primitive event, the approach uses a monitoring-HMM.
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